Md. Nahiduzzaman

মোঃ নাহিদুজ্জামান


  •  Room No:  420, Dept. Of ECE
  •  Phone:   880-1763591843
  •  Email:
Field of Research
  •  Deep Learning Application
  •  Machine Learning Application
  •  Medical Image Analysis

  •  First Joined: 05th Nov, 2019
  •      Dept. of Electrical & Computer Engineering



Book / Book Chapter
Journal Articles
Conference Papers
SL Authors Title Publisher Details Publication Year Type
1 Md. Robiul Islam, Md. Nahid Hasan, Md. Nahiduzzaman Severity Grading of Diabetic Retinopathy using Deep Convolutional Neural Network IJISRT 2021 Journal
2 Md Nahiduzzaman, Md. Omaer Faruq Goni, Md. Shamim Anower, Md. Robiul Islam, Mominul Ahsan, Julfikar Haider, Saravanakumar Gurusamy, Rakibul Hassan, Md. Rakibul Islam A Novel Method for Multivariant Pneumonia Classification based on Hybrid CNN-PCA Based Feature Extraction using Extreme Learning Machine with Chest X-Ray Images IEEE (IEEE Access) 2021 Journal
3 Md Nahiduzzaman, Md. Robiul Islam, S. M. Riazul Islam, Md. Omaer Faruq Goni, Md. Shamim Anower, Kyung-Sup Kwak Hybrid CNN-SVD Based Prominent Feature Extraction and Selection for Grading Diabetic Retinopathy using Extreme Learning Machine Algorithm IEEE (IEEE Access) 2021 Journal
4 Md Rakibul Islam, Abdul Matin, Md Nahiduzzaman, Md Saifullah Siddiquee, Fahim Md Sifnatul Hasnain, SM Shovan, Tonmoy Hasan A Novel Deep Convolutional Neural Network Model for Detection of Parkinson Disease by Analysing the Spiral Drawing Springer, Singapore 2021 Book Chapter
5 Saleh Mohammed Shahriar, Hasibul Islam Peyal, Md Nahiduzzaman, Md Abu Hanif Pramanik An IoT-Based Real-Time Intelligent Irrigation System using Machine Learning ICTS 2021 Conference
6 Md. Nahiduzzaman, Md. Julker Nayeem, Md. Toukir Ahmed, Md. Shahid Uz Zaman Prediction of Heart Disease Using Multi-Layer Perceptron Neural Network and Support Vector Machine IEEE 2020 Conference
Phd Students
IdNameThesis workCurrent Position
Masters Students
IdNameThesis workCurrent Position
Undergraduate Students
IdNameThesis workCurrent Position
Activity Description